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Abstract

A convolution program (CONV) solving responses to a collimated finite diameter photon beam perpendicularly
incident on a multi-layered tissue has been coded in ANSI Standard C, hence, the program can be executed on
various computers. The program, employing an extended trapezoidal rule for integration, convolves the responses to
an infinitely narrow photon beam computed by a companion program (MCML). Dynamic data allocation is used for
CONY as well as MCML, therefore, the number of tissue layers and grid elements of the grid system can be varied
at run time. The potential error due to not scoring the first photon-—tissue interactions separately is illustrated. The
program, including the source code, has been in the public domain since 1992 and can be downloaded from the web

site at http://biomed.tamu.edu/ ~ Iw. © 1997 Elsevier Science Ireland Ltd.
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1. Introduction

Monte carlo modeling has been used frequently
to simulate photon propagation in tissues [1-8]
which provides good accuracy and flexibility com-
pared with other theories. However, a long com-
putational time used to trace a large number of
photons is usually required to achieve sufficiently
precise results.

* Corresponding author. Tel. + 1 409 8479040; fax: + 1 409
8479005; e-mail: LWang@tamu.edu.

We have written a companion program named
MCML, in Standard C for Monte Carlo simula-
tions of photon propagation in multi-layered tis-
sues [9,10], which deals only with responses to an
infinitely narrow photon beam normally incident
on the surface of a multi-layered tissue (impulse
responses). However, all photon beams have finite
size in reality. We could use the Monte Carlo
simulation to compute the response to a finite size
photon beam directly by distributing the initial
positions of launched photons. The only problem
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with this approach is that it requires tracing an
even larger number of photon packets to reach an
acceptable variance than simulating the responses
of an infinitely narrow photon beam. Therefore,
this method is not computationally efficient, al-
though sometimes it may be the only approach
for tissue configurations without proper symme-
try, such as a tissue with an irregularly buried
object. Fortunately the responses to a finite size
photon beam incident onto the multi-layered tis-
sues can be obtained through convolution over
the responses to an infinitely narrow beam.

In the following sections, we will describe the
mathematics and numerical computation of the
convolution (Section 2), present some sample
computational results (Section 3) and summarize
(Section 4).

2. Convolution

This section will discuss the principle and nu-
merical computation of convolving Monte Carlo
simulation results of an infinitely narrow photon
beam to yield the responses to photon beams of
finite size where the photon beams are always
perpendicular to the surface of a multi-layered
tissue. The convolution process is implemented in
a program called CONV. Like MCML, it is writ-
ten in ANSI Standard C, hence, it can be executed
on various computers, provided they have Stan-
dard C compilers. Only Gaussian beams and cir-
cular flat beams are considered in the program.
To check the program, we compared our convolu-
tion results with those of other investigators [11].

2.1. Principles of convolution

The system, which is a multi-layered tissue with
a collimated photon beam perpendicularly inci-
dent on the tissue surface, is linear and invariant.
The linearity means that if the input intensity of
the infinitely narrow photon beam is multiplied by
a factor, the responses will be multiplied by the
same factor. It also means that the response to
two photon beams is the sum of the responses to

each photon beam. The invariance means that
when the photon beam is shifted horizontally by a
distance in a certain direction, the responses will
also be shifted by the same distance horizontally
and in the same direction. Therefore, according to
the profile of the finite size photon beam, its
response can be convolved over the Green’s func-
tion that is the response of an infinitely narrow
photon beam.

Impulse responses are simulated with MCML
first, where a cartesian coordinate system is set up
on the tissue [9]. The origin of the coordinate
system is the photon incident point on the tissue
surface; the z-axis is always the normal of the
surface pointing toward the inside of the tissue;
therefore, the xy-plane is on the tissue surface.

The responses simulated in the Monte Carlo
modeling can be internal absorption, reflectance,
or transmittance. We denote the responses to a
photon beam of finite size generally as C(x, y, z),
and denote the Green’s function corresponding to
the type of response under consideration as
G(x, y, z). Because the photon beam is perpendic-
ularly incident on the tissue surface and the multi-
layered tissue has cylindrical symmetry, the
function G( x, y, z) possesses cylindrical symme-
try. If the collimated photon beam as the source
has the intensity profile S(x, y) the responses can
be obtained through convolution [2]:

Clx,y, 2)

- r fﬂ GOx— ',y =y, 2)S(x', y) dx’ dy,
T (1)

which is reformulated with x" =x — x" and y" =

y—=Jy:

Cx, y,z)

= j j G(x", y", 2)S(x —x",y = y")

x dx"dy”, 2

In Eq. (1), the Green’s function is a function of
the distance between the source point (x’, y') and
the observation point (x, y), where the distance is:

d'=/(x—xV+y—y) (3
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If the intensity profile S(x’,y’) of the source
also has cylindrical symmetry, S(x’, y') is only a
function of the radius, which is the distance be-
tween the source point (x’, ') and the origin of
the coordinate system, i.e.:

r'= \/x'—zm “

Therefore, Eqs. (1) and (2) can be reformulated
considering these symmetries:

Cx,y,z)
- r r G/ XVt 7))

X S(/x?+y?Hdx' dy’ &)
C(x,y,2)

= j j G(/(x?*+y", z)

X S(/(x = x"V +(y = y"P) dx" dy". (6)

Because the response C(x,y,z) will have the
same cylindrical symmetry, the problem can be
more easily handled in a cylindrical coordinate
system, where Eqs. (5) and (6) can be rewritten:

C(r,z)= joo S’
0

2
r’[j G(\ﬂ2 +r?—2rr'cos 0, z) da’]

0

x dr’, (M

C(r,z)= jw G(r", z)
0

2r
r”[j S(/r*+r"—2rr" cos §") dH"]

0

x dr”. ®

The variable transformation is illustrated in
more detail in [7]. Eq. (8) is more advantageous
than Eq. (7) for computation because the inte-
gration over 6" is independent of z; hence, for
all depths z this integration need only be com-
puted once. As presented subsequently, in some
cases the integral over 8” can be solved in terms
of Bessel functions or analytically, therefore, the

2-dimensional integral is converted into a 1-di-
mensional integral, which can be computed sig-
nificantly faster than a 2-dimensional integral.
We will consider a Gaussian beam and a circu-
lar flat beam as examples of cylindrical symme-
try where Eq. (8) can be further simplified.

2.2. Convolution over Gaussian beams

In the case of a Gaussian beam, if the diver-
gence is ignored, the above convolution can be
applied. The 1/e? radius of the Gaussian beam is
denoted by R, and the beam intensity profile is:

S(r')= S, exp(— 2(r'/R)?), ®

where the intensity in the center (r=0), S,, is
related to the total power P by:

So = 2P/(nR?). (10)
Substituting Eq. (9) into Eq. (8), the convolu-

tion becomes:

C(r,z)=S(r) joo G(r", z) exp( — 2(r"/R)?)
o

2
[j exp(4rr” cos 8”/R?) dH”]r” dr”,
0

(11

where the integration in the square brackets re-
sembles the integral representation of the
modified Bessel function [12]:

l 2

Iy(x)=— j exp(x sin §) d6, (12)
2n Jo

where I, is the zero order modified Bessel func-

tion, which can be reformulated converting the
sine function into a cosine function:

I(x)= 21—” rn exp(x cos 8) dé. (13)

0

Eq. (11) can be rewritten by using Eq. (13):

C(r,z)=8(@) jx G(@r", z) exp( — 2(r"/R)?)
0

x I(4rr”|R*2mr” dr”. (14)
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2.3. Convolution over circular flat beams

For a circular flat beam, which is collimated
and homogeneous within a radius R, the source
function becomes:

P/(nR?» ifr'<R

StY= if r'>R

(15)
where P is the total power of the beam. Substitut-
ing Eq. (15) into Eq. (8), the convolution be-
comes:

C(r, z)= P/(nR? jw G@r", z)y(r, r"2nmr"” dr”,

° (16)
where the function I,(r, r") is:
Ly(r,r") =

1 if R>r+ 1"

1
—cos”(r’+r"—R*»/2rr")) if [r—r"|<R<r+r"
n

7
0 if R<|r—r"|

From Eq. (17) the integral limits in Eq. (16) can
be changed to a finite region:

C(r,z) = P/(nR?) jH i G(r", z)y(r, r"2mr" dr”,

’ (18)
where
a=Max(0, r — R), (19)

where the function Max takes the greater of the
two arguments.

As a special case of a circular flat beam, we let
the radius R approach infinity, which represents
an infinitely wide flat beam. In this case, the total
power P also approaches infinity, but we can use
the power density to describe the intensity of the
beam. The convolution for this beam can be
accomplished by simply letting R— o and P/(n
R?) — S, where S is the power density or irradi-
ance (W/cm?) in Eq. (18). This substitution leads
I%(r, r") to a constant 1, and Eq. (18) becomes:

C(r,z)=8 j G(r", z)2nr" dr". (20)
0
This equation implies that in a Monte Carlo
simulation using MCML, if the photon weight
over all the r grid elements for a given z grid is
totaled, and then the sum is divided by the total
number of traced photons, the result will be the
absorption density as a function of z for an
infinitely wide beam with a unity power density.

2.4. Numerical solution to the convolution

During Monte Carlo simulations, a grid system
is set up [9]. A 2-dimensional homogeneous grid
system is set up in the r and z directions. The grid
separations are Ar and Az in the r and z direc-
tions, respectively. The total numbers of grid ele-
ments in the r and z directions are N, and N,,
respectively.

When photon beams are Gaussian or circular
flat beams the 2-dimensional integrations are con-
verted into l-dimensional integrations. Because
the Monte Carlo simulation scores physical quan-
tities to discrete grid points, the best choice of an
integration algorithm is the extended trapezoidal
rule, which has been written in C called qtrap()
by Press et al. [13]. The function qtrap() is a
driver routine for another function trapzd()
which actually implements the extended trape-
zoidal rule integration. Press et al. state “‘in-
creased sophistication will usually translate into a
higher order method whose efficiency will be
greater only for sufficiently smooth integrands.
qtrap Is the method of choice, e.g. for an inte-
grand which is a function of a variable that is
linearly interpolated between measured data
points™.

Another choice of integration is evaluating the
integrand at the original grid points. However,
this approach does not have any control over the
integration accuracy. For a given accuracy some-
times this approach is more accurate than re-
quired, which is a waste of computational time,
and sometimes is less accurate, which does not
meet expectations. For example, the number of
original grid elements in the r direction is 50, and
we want to convolve the responses over a circular
flat beam with a radius of R which is about 5Ar.
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To compute C(0, z) for a circular flat beam using
Eq. (18), the integral range, from 0 and R, only
covers 5Ar. This means only five function evalua-
tions will be completed, which may yield an unac-
ceptable answer. In contrast, the extended
trapezoidal rule performs the correct number of
function evaluations until the computation
reaches the user-specified level of accuracy.

We have slightly modified the original function
qtrap() so that it takes the required degree of
accuracy as an argument to the function. There-
fore, the users of the program CONV can change
the allowed error at run time.

The sequence of integrand evaluations [13] used
in the extended trapezoidal rule is shown in Fig.
la. “Sequential calls to the routine trapzd( ) incor-
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Fig. 1. (a) Integrand evaluation sequence in extended trape-
zoidal rule of integration. (b) Interpolation and extrapolation
of the physical quantities. In this example, the number of grid
elements in the r direction ¥, is set to 8. The symbols a and b
are the integral limits. The arrows point to the places where
the integrand is evaluated.

porate the information from previous calls and
evaluate the integrand only at those new points
necessary to refine the grid. The bottom line
shows the total of function evaluations after the
fourth call” [13]. If we are integrating f(x) over
[a, b], we evaluate f(a) and f(b) in the first step as
noted by 1 and 2 in Fig. la. This step will not be
sufficiently accurate unless the function is linear.
To refine the grid, we evaluate f((¢ + ib)/2) in the
second step as noted by 3, and we continue this
process until the integration evaluation reaches
the specified accuracy.

2.5. Interpolation and extrapolation of physical
quantities

The physical quantities under discussion have
been computed using MCML over a grid system.
As discussed in [9] the optimized r coordinate,
instead of the center, for the scored physical
quantities for an r grid element is:

r,= l:(i+0.5)+ 21

|

120+ 0.5)]" "
where i is the index to the grid element (0 <i <
N, —1). For the first grid element, the optimized r
coordinate is (2/3)Ar instead of (1/2)Ar. The offset
between the optimized and the centered coordi-
nates in each grid element decreases as the index i
increases. The convolution error of using the cen-
ters will be illustrated in the next section.

In Fig. 1, the function qtrap() will need to
evaluate the integrand (hence the physical quanti-
ties) at points that may not be the original grid
points. Linear interpolations are used for those
points that fall between two original grid points,
and linear extrapolations are used for those points
that fall beyond the original grid system (Fig. 1).
The circles represent the original scored values at
the grid points, and the solid lines and the dashed
lines represent the interpolation and extrapola-
tion, respectively. For a given number of grid
elements in the r direction (¥, = 8§ in this picture),
the extrapolation is computed only up to (N, —
0.5)Ar because the linear extrapolation can be
unreliable if extended too far, hence, the physical
quantity beyond (N, — 0.5)Ar is set to zero.
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In the computation by MCML [9], the last cells
in the r direction are used to collect the photons
that do not fit into the grid system and do not
represent the local physical quantities. Therefore,
the upper limit of extrapolation is (N, — 0.5)Air
instead of (N, — 0.5)Ar. In a word, the physical
quantities are non-zero in the interval [0, ry,,],
where r,, is:

max

Fmax = (¥, — 0.5)Ar. (22)
2.6. Integrand evaluation for Gaussian beams

In Eq. (14), the evaluation of the physical quan-
tities is only part of the integrand evaluation for
convolution over a Gaussian beam. Although the
integration must converge for physical reasons the
form of Eq. (14) may not be directly computable
digitally because the modified Bessel function in-
creases rapidly as the argument increases and may
exceed the limit which the computer can hold
(103 for some computers), which is called
overflow. Therefore, to compute Eq. (14), a
proper reformulation is required. We note that
the modified Bessel function in the region where
the argument is large has the following approxi-
mation:

I(x) ~ exp(x)//2nx for large x, (23)

Therefore, if we extract the exponential term from
I,() we ensure that the modified Bessel function
decreases as the argument increases. We define the
following new function based on Iy( ):

Too(x) = Ip(x) exp( — x), (24)
or
Io(x) = I (x) exp(x), (25)

I,.() is always bounded. Eq. (23) demonstrates
the asymptotic behavior of the function Iy(),
hence, Eq. (24) does not carry any approxima-
tions. Substituting Egs. (9), (10) and (25) into Eq.
(14), it becomes:

c(r, z) = % r G(r", 2) exp[ - 2(r”1; r> ]
0

4 "
X 108(%—>r” dr”. (26)

Because both the exponential term and the ()
term decrease, the integrand can be computed
without causing overflow.

The computation speed is another issue. We
found that the evaluation of the exp( )/, () in Eq.
(26) is a major part of the computation for each
integration, which can take up to 90% of the
computational time depending upon the specific
problem. For multi-variant physical quantities
(e.g. the internal fluence as a function of r and z),
the convolution may repeatedly evaluate the
exp( ), () in Eq. (26) at the same r coordinate as
the integration is computed for different z coordi-
nates.

Therefore, if we can save the function evalua-
tions, i.e. the computations of exp()/,.() in Eq.
(26), during the convolution for one z coordinate,
then we can save a lot of computational time.
However, the integration is computed iteratively
until a given precision is reached. Hence, the
number of function evaluations is unknown in
advance, and we can save only the function evalu-
ations with dynamic data allocation. Because the
evaluation sequence of the trapezoidal integration
gtrap() resembles a binary tree as shown in Fig.
la we used a binary tree to store the function
evaluations which is faster in searching than a
linear linked list. Although the first two nodes are
out of balance, the subtree below node 3 is per-
fectly balanced.

2.7. Integral limits for Gaussian beams

The upper integral limit in Eq. (26) for Gaus-
sian beams is infinity. This problem can be solved
using a variable transformation and the integra-
tion can be computed by the routine midexp()
[13]. However, we found that this approach is not
computationally efficient. Therefore, we chose to
use qtrap( ) instead. We can reduce the upper limit
to a finite value by truncating the exponential
term in Eq. (26). When

|r” — r| < KR, 27N
or
r—KR<r"<r+ KR, (28)



L. Wang et al. / Computer Methods and Programs in Biomedicine 54 (1997) 141-150 147

where K is a constant which can be set in the
convolution program CONV, we compute the
integrand. Otherwise, we neglect the integrand.
For example, if we choose K equal to 4 (which is
actually used in the computation for this article)
the exponential term in Eq. (26) is about 10~ 4,

As we discussed in the beginning of this section
we compute only the physical quantities in the
interval [0, r,,], where r.., is given by Eq. (22).
Combining this limit and Eq. (28), Eq. (26) be-
comes:

C(r,z) = % r G(r", 2) exp[ - 2(’”1; ’ﬂ

4rr”
I, (F)r” dr”, 29)
a =Max(0, r — KR), 30)
b =Min(ry.,. r + KR), 31

where the functions Max() and Min() take the
greater and lesser of the two arguments, respec-
tively.

2.8. Integration for circular flat beams

The integrand evaluation for circular flat beams
is much simpler than that for Gaussian beams
because the integral limits for the flat beams are
finite and the evaluation of the integrand causes
no overflow. However, the evaluation of I%() in
Eq. (18) is also time-consuming. Similar to the
integrand evaluation for Gaussian beams, a bi-
nary tree is used to store the evaluated I%() to
speed up the integration.

Because the integral limits in Eq. (18) for circu-
lar flat beams are finite, the integration can be
computed directly using the function qtrap(), and
because we compute only the physical quantities
in the interval [0, r,,,], where r_,,, is given by Eq.
(22), Eq. (18) rewrites:

C(r, z) = P/(nR? jb G(r", ), (r, r"2nr" dr”,

’ (32)
where
a=Max(0,r ~ R), (33)
b= Min(r,,,, r + R). (4)

2.9. First interactions inside tissues

In Monte Carlo simulations by MCML [9], the
first photon-—tissue interactions (unscattered ab-
sorption) inside the tissues are scored separately
[14]. They are always on the z-axis, and lead to a
delta function when the impulse responses of in-
ternal probability fluence (¢cm~?) or absorption
probability density (cm~3) are computed. The
impulse response can be expressed in two parts:

G(r, z) = G\(0, 2)8(r)/2nr) + Gy(r, 2), 3%

where the first term results from the first photon—
tissue interactions, and the second from later in-
teractions.

Substituting Eq. (35) into Eq. (29), we obtain:

C(r, z) = G|(0, 2)S(r)

4p (b " r’—r\?
+ 7 Gy(r",z)exp| —2 R
4rr”
IOe(Tz—-)r” dr”, (36)

for Gaussian beams. Substituting Eq. (35) into
Eq. (32), we obtain:

C(r, z) = Gy(0, 2)S(r)

b
+ P/(=R?) j Gy(r", ) y(r, ¥ 2mr" dr”,
) (37)

for circular flat beams. The comparison between
the approaches with and without scoring the first
interactions separately will be discussed in the
next section.

2.10. Source of error in convolution

In Egs. (31) and (34) the upper limit of the
integration may be limited by r,,,, which is the
grid limit in the r direction during the Monte
Carlo simulation. The physical quantities beyond
the original grid limit in the r direction do not
contribute to the convolution computation, which
leads to an error.

For circular flat beams first, from Eq. (34), we
know that when

Foax =7+ R, (38)
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Table 1
The optical properties of the three-layered tissue

1

1

Layer n u, (em™") us (em™—1) g Thickness (cm)
1 1.37 1.0 100.0 0.9 0.1
2 1.37 1.0 0 0.1
3 1.37 2.0 0.7 0.2

The refractive indices for the top and bottom ambient media are 1.0.

or
r< Fmax — Ra (39)

the limited grid in the r direction does not affect
the convolution. Otherwise, the convolution is
truncated by the limited grid in the r direction
[11]. Therefore, we should not trust the validity of
the convolution data for r>r,,, — R. In other
words, if you want to observe the physical quan-
tity at r in response to a circular flat beam of
radius R, the grid limit in the r direction should
be large enough so that Eq. (38) holds when you
perform the Monte Carlo simulation with
MCML.

For Gaussian beams, there are no clean formu-
las like Eqgs. (38) and (39) to describe the valid
range because the Gaussian beams theoretically
extend to infinity in the r direction. However, the
convolution results of a Gaussian beam with a
1/e? radius of R is close to those of a circular flat
beam with a radius of R for r » R [11]. Therefore,
to certain precision we can use the same criteria
for circular flat beams (Egs. (38) and (39)) for
Gaussian beams.

3. Sample computation

In this section, we will illustrate the error
caused by not scoring the first photon-tissue
interactions separately and present a sample con-
volution run. As an example, the impulse re-
sponses were computed by MCML for a tissue
described in Table 1. The grid sizes in the r and z
directions are both 0.01 cm. The number of grid
elements in the r and z directions are 50 and 40,
respectively. The number of photon packets
traced is 1000 000. This example took approxi-

mately 860 s of computational time on a Silicon
Graphics Power Challenge running Irix 6.2.

The impulse response of internal fluence near
the tissue surface (z = 0.005 cm) is shown in Fig.
2a, where the first interactions were scored sepa-
rately. If they were scored into the first r grid
element it would augment the fluence in the first

104 PNV SRS (TS N OOV T N U Y N U VO TN S T TN 2 U O W
¥+ The first grid element
£ 197 o | 3
N 3 Excludes 3
5§ 102], + Includes .
8o R the first interactions. [
L8 o] X
1004 ;
] (a) Impulse response oF

10 Lttt it e

0 0.1 0.2 0.3 0.4 0.5
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TE < without scoring the first|
9o interactions separately.| F
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104 (b) Radlus 0.01 cm o F
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Fig. 2. (a) Impulse response of internal fluence at z =0.005 cm
computed by MCML (see Table 1 for tissue configuration). (b)
Internal fluence at z =10.005 cm for a circular flat beam. The
convolutions with and without scoring the first photon—tissue
interactions separately are compared.



L. Wang et al. / Computer Methods and Programs in Biomedicine 54 (1997) 141-150 149

grid element by 1.95 x 10° cm ~2, compared with
the current value of 1.34 x 10> cm~2. We con-
volved the impulse response over a circular flat
beam with an energy of 1 J and a radius of 0.0]
c¢m with and without scoring the first interactions
separately for comparison (Fig. 2b). The relative
error of the convolved results at r=0.015 cm,
which is immediately after the beam radius, is as
much as 120%.

We also convolved the impulse response using a
Gaussian beam with an energy of 1 J and a radius
of 0.1 cm. The convolution error was set to 0.01.
The contour lines before and after the convolu-
tion are shown in Fig. 3.

4. Conclusions

Based on the Monte Carlo simulation results
for impulse responses to an infinitely narrow pho-
ton beam normally incident on a multi-layered
tissue, one can compute the responses to a colli-
mated photon beam of finite size employing con-
volution. The convolution avoids time-consuming
Monte Carlo simulations for photon beams of
finite size and, at the same time, provides the
flexibility of computing responses to various
beams based on the same impulse response.

The convolution for Gaussian beams and circu-
lar flat beams has been coded in ANSI Standard
C, therefore, it can run on various computer
platforms, e.g. Macintoshes, IBM PC/compat-
ibles, Sun SPARCstations, and IBM RISC/6000
POWERSstations. Dynamic data allocation is used
in the program, therefore, the number of tissue
layers and grid elements can be varied at run time
and the computer memory is used efficiently.

The numerical integration in convolution em-
ploys an extended trapezoidal rule which allows
users to specify the precision. With this approach
users need only be concerned about the linearity
of the physical quantities to be scored in each grid
element when doing Monte Carlo simulations. In
contrast if the numerical integration is performed
by evaluating the integrand over the original grid
elements set up during the Monte Carlo simula-
tion the users must ensure a sufficient number of
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Fig. 3. (a) 2-Dimensional fluence distribution of an impulse
response computed by MCML (see Table 1 for tissue configu-
ration). (b) 2-Dimensional fluence distribution of a Gaussian
beam of 0.1 cm radius and 1 J energy computed by CONV.

grid elements to be covered by the photon beam
of finite size to obtain a reasonable integration
precision.

The first photon-tissue interactions inside the
tissue should be scored separately which yields a
term including a delta function of the radius. The
error caused by scoring the first photon-tissue
interactions into the first r grid elements instead
of separately can be unacceptable in some cases
(120% in the example). The error in the low-preci-
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sion approaches may be minimized by narrowing
the grid size; however, for the Monte Carlo simu-
lations a very small grid size can lead to a large
statistical variance in each grid element and a
small overall grid system dimension due to com-
puter memory limit.

The CONV and MCML simulation package
can be downloaded from the web site at http://
biomed.tamu.edu/ ~lw or through FTP to
biomed.tamu.edu (user: conv; password: meml) or
obtained from the authors directly.
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